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Among the salient features of shear-driven plane Couette flow is the constancy of the 
total shear stress (viscous and turbulent) across the flow. This constancy gives rise to a 
quasi-homogeneous core region, which makes the bulk of the flow substantially different 
from pressure-driven Poiseuille flow. The present second-moment closure study addresses 
the conflicting hypotheses relating to turbulent Couette flow. The inclusion of a new 
wall-proximity function in the wall-reflection part of the pressure-strain model seems 
mandatory, and the agreement with recent experimental and direct numerical simulation 
(DNS) results is encouraging. Analysis of model computations in the range 
750 < Re < 35,000 and comparisons with low-Re DNS data suggest that plane Couette 
flow exhibits a local-equilibrium core region, in which anisotropic, homogeneous 
turbulence prevails. However, the associated variation of the mean velocity in the core, 
as obtained by the model, conflicts with the intuitively appealing assumption of 
homogeneous mean shear. The constancy of the velocity gradient exhibited by the DNS 
therefore signals a deficiency in the modeled transport equation for the energy dissipation 
rate. 
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1. I n t r o d u c t i o n  

The plane Couette flow is the shear-driven motion of fluid 
bounded by two parallel planes in relative motion. The Couette 
flow is turbulent in the majority of practical cases, e.g., 
engineering flows associated with lubrication technology, 
thin-film coating, and stratified two-phase flow, and in natural 
flows like the wind-induced motion in shallow lakes. From a 
turbulence modeler's point of view, the conceptually simple 
fully developed turbulent Couette flow between two infinite 
plates is particularly attractive due to its homogeneity in planes 
parallel with the bounding plates. Among its outstanding 
features are the unidirectional fluid motion and the constancy 
of the shear stress across the flow. Moreover, within the 
framework of turbulent transport modeling, any set of 
differential model equations reduces to a set of ordinary 
differential equations in the coordinate y perpendicular to the 
plates. 

The possible existence of a constant mean shear rate dU/dy 
in the core region of turbulent Couette flow led von K~rm/m 
(1937) to introduce the concept of homologous turbulence. 
Robertson and Johnson (1970) pointed out that the rate of 
turbulence energy production is constant in the homologous 
or quasi-homogeneous core region, and they moreover 
conjectured that the production and dissipation of mean 
turbulent kinetic energy must balance at every point in this 
region. In contrast, Schneider (1989) proposed a new turbulence 
model that allows for significant countergradient diffusion of 
turbulent energy from the core towards the walls. By adding 
to the standard gradient-diffusion model a diffusive term that 
takes variation of an integral length scale into account, 
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Schneider obtained surprisingly good agreement with the 
remarkable low energy level measured in the Couette flow 
apparatus of El Telbany and Reynolds (1980, 1981, 1982). 
Gibson (1988) demonstrated that with Schneider's new 
diffusion model only half of the turbulent energy in the core is 
dissipated locally, while the other half is diffused away from 
the center. 

Attempts to compute the plane Couette flow with a k-e 
model (Henry and Reynolds 1984) and Reynolds stress closures 
(Schneider 1989; Obi et al. 1989) led to a uniform level of 
turbulent kinetic energy across the flow and an associated 
balance between energy production and dissipation. A common 
feature of these studies is the application of the wall-function 
approach in order to match the numerical solution to some 
local-equilibrium conditions at the wall-adjacent node. 
Nisizima and Yoshizawa (1987), however, adopted an 
anisotropic k-e closure and solved the model equations directly 
into the walls. Nevertheless, they failed to reproduce the 
experimentally observed near-wall peaks. Monnier and 
Stanislas (1989) considered three of the available low-Reynolds- 
number extensions of the high-Re k-e model. Two of these 
models predicted a local energy maximum near the walls, but 
the energy level in the core region was appreciably higher than 
in the extensive experiments by E1 Telbany and Reynolds (1980, 
1981, 1982). 

Very recently, three independent attempts to model the plane 
Couette flow led to inconclusive results. Zhang et al. (1993) 
used a low-Re extension of a standard second-moment closure 
and arrived at the puzzling conclusion that their prediction was 
actually worse than that of a k-e model. Sund (1993) and 
Andersson et al. (1993) adopted the second-moment near-wall 
closure of Launder and Shima (1989) and obtained reasonable 
results after having introduced brute-force modifications in the 
original model. More specifically, a wall-damping function that 
accounted for only one wall at a time was introduced by Sund 
(1993), while the originally isotropic model for the dissipation 
rate tensor was replaced by an anisotropic model by Andersson 
et al. (1993) in order to achieve numerical convergence. 

In spite of its conceptual simplicity, fully developed Couette 
flow is rather difficult to realize in the laboratory; see, e.g., 
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Aydin and Leutheusser (1987, 1991). Fully developed flows are, 
on the other hand, particularly attractive objects for direct 
numerical simulations (DNSs). The recently undertaken DNSs 
(e.g., Lee and Kim 1991; Kristoffersen et al. 1993) of plane 
Couette flow provide valuable guidance for a better 
understanding and more reliable modeling of this particular 
flow field. Guided by our in-house DNS data (Kristoffersen et 
al. 1993) and supplemented by the most recent laboratory 
experiments (Tillmark and Alfredsson 1993) of fully developed 
Couette flow, the purpose of the present investigation is to 
address the conflicting hypotheses relating to this flow, thereby 
attempting to resolve the apparent difficulties associated with 
the modeling of the seemingly simple flow. 
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X 

2. P h y s i c a l  m o d e l  p r o b l e m  

The problem considered is that of steady turbulent Couette 
flow between two infinite parallel planes, as shown schematic- 
ally in Figure 1. This constant-pressure flow is induced solely 
by the relative motion of the two planes, of which the lower 
is at rest and the upper is moving at a constant velocity 
U,  in the positive x-direction. The Reynolds-averaged 
Navier-Stokes equation governing the transport of streamwise 
mean momentum can be written as 

0 = dy # ~ y  - o~~ (1) 

for a constant property fluid. Since the mean velocity vector 
V = (U(y),0,0) is aligned with the planes, the continuity 
constraint dUo/dx~ = 0 is automatically satisfied. The a priori 
unknown Reynolds shear stress, -p~'~, in Equation 1 can be 
obtained from the transport equation 

d u,uj 
D u i u j  - -  P i j  - -  F'ij "1- ~)ij Jr- O i j  --I- v - -  (2) 

Dt dy 2 

for the second-moments u ~ .  The rate of stress production due 
to mean shear, 

u~u~ 7 /  (3) 
P~J= - ~ Oxk ~x~d 

involves only mean velocity gradients and the Reynolds stresses 
themselves, whereas the rates of viscous dissipation e~j, 
pressure-strain interactions ~bu, and turbulent diffusion D~j 

Figure 1 Schematic of plane turbulent Couette f low 

require extensive modeling. Since the steady flow under 
consideration is homogeneous in the (xz)-planes, the rate-of- 
change D~u~/Dt = 0, and the only nonzero production terms are 
Pll  = - 2 - ~  dU/dy and P12 = P21 = -v2  dU/dy. 

3. T u r b u l e n c e  m o d e l i n g  

3.1. Reynolds stress transport mode/  

The widely used second-moment closure for near-wall 
turbulence proposed by Launder and Shima (1989) has been 
adopted in the present study. This model has been applied to 
a number of boundary-layer problems (Launder and Shima 
1989; Shima 1993a, 1993b) and was among the eight near-wall 
Reynolds-stress closures scrutinized by So et al. (1991). In spite 
of an incorrect asymptotic behavior at the wall, the overall 
performance is quite convincing. Here, we are not concerned 
about the flow in the immediate vicinity of the planes, and the 
Launder and Shima model should therefore be an appropriate 
choice. 

The Launder and Shima model is essentially an extension of 
a well-established high-Reynolds-number model (Gibson and 
Launder 1978) intended to account for the wall effects in the 
viscous sublayer. First, the turbulent stress diffusion associated 

N o t a t i o n  

a u Reynolds stress anisotropy, u.-'-~/k - 26u/3 
A Anisotropy parameter, 1 - 9(A 2 - A3)/8 
A 2 Second invariant, ao~i~ 
A 3 Third invariant, a~kak~j~ 
Amax Maximum value of A 
Cr Skin-friction coefficient, 2(zw/p)/(Uw/2) 2 
d Effective wall distance 
D u Turbulent diffusion of Reynolds stresses 
f Wall-proximity function 
f.ew New wall-proximity function 
# Weighting function, (1 - A /A max)  2 
h Channel half-width 
k Turbulent kinetic energy, u--~.ff2 
P Generation rate of kinetic energy, Pii/2 
Po Shear generation rate of uiuj 
Re t Turbulent Reynolds number, k2/ve 
Re Reynolds number, hUw/v 

U ,  V 

Ui, r m s  

U i Uj 
Ur 

U,  
Xi 
x, y 
y+ 

Greek 

~qj 

V 

P 
"c 

ck~j 

Velocity fluctuations in x- and y-directions 
Turbulence intensity in xl-direction 
Kinematic Reynolds stress 
Wall friction velocity, ('~w/p) 1/2 

Wall speed 
Cartesian coordinate 
Coordinates defined in Figure 1 
Inner variable, (h + y)uJv 

symbols 

Energy dissipation rate, eii/2 
Dissipation rate tensor 
Dynamic viscosity 
Kinematic viscosity, pip 
Density 
Total shear stress, #dU/dy - p-~ 
Wall shear stress 
Pressure-strain interactions 
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with velocity and pressure fluctuations is represented by the 
generalized-gradient-diffusion hypothesis 

O u = ~ y  C, -~ dy J (4) 

whereas the dissipation rate tensor e u is assumed to be locally 
isotropic, i.e., 

2 
~ = ~ 6~: (5) 

The pressure-strain correlation tensor ~u is conventionally 
split into four different parts, q~o, ~ + ~J.2 + ~b~'~. ~ + ~b~'~. 2, 
which are modeled separately as 

C b u . , = - C  1~ ~ - ~ 6 , i k  (6) 

( 2 6i jP)  (7) 4~. 2 = - C 2 \ P u  - ~ 

e(.-:-d 3 3 ) 
dp,~,l = C 7 ~ v 6,i -- ~ b~ifj2 - -2 vu---j6,z f (8) 

q~,'~,2 = C~' ~b22.26,~ - ~ q~2,,26j2 - ~ ~b2j.26,2 f (9) 

where the wall-proximity function f is defined as 

k3/2/~ 
f = C a - -  (10) 

d 

and the effective wall distance d varies as 

1) 
- =  - - +  (11) 
d + y  h - y  

in order to account for the influence from both walls. 
Finally, in order to close the system of model equations, the 

dissipation rate e of the turbulent kinetic energy is obtained 
from its own modeled transport equation 

- -  = - -  + C~l ~ P - -  C~2 - -  
Dt dy k 

where 

(12) 

_ 2v(dk~/2~ 2 
= (13) ~: e \ d y . ]  

is negligibly different from e outside the viscous sublayer. In 
the problem at hand, the dissipation rate is a function of y only, 
and the rate-of-change De/Dt = O. 

The essence of the Launder and Shima approach is that some 
of the model coefficients that appear in the high-Reynolds- 
number closure outlined above are made functions of four 
dimensionless turbulence characteristics, namely, the turbulent 
Reynolds number Re t, the Reynolds stress invariants A 2 and 
A3, and the ratio of production to dissipation of turbulent 
kinetic energy Pie. Moreover, the local isotropy model 
(Equation 5) for the dissipation rate tensor is retained, and the 
expected anisotropy of e u in the near-wall region is absorbed 
in the pressure-strain model. 

The recommended low-Re expressions are 

C 1 = 1 + 2.58AA~/'[1 - exp {--(0.0067Re,)2}] 

C 2 = 0.75A 1/2 

C~ = -2C~/3  + 1.67 

(14) 

(15) 

(16) 

Table I Constants in the Launder- 
Shima closure 

C, Ca C, C,2 

0.22 0.40 0.18 1.90 

C~2 = max [(2C2/3 - 1/6)/C2, O] 

C~1 = 1.45 + ~b 1 + 1 ~ 2  

with 

~ = 2.5A(P/e - 1) 

~k 2 = 0.3(1 -- 0.3A2) exp [-(0.002Re,) 2] 

(17) 

(18) 

(19) 

(20) 

and the remaining coefficients take their standard values as 
given in Table 1. Shima (1993a, 1993b) recently advocated 
modified values of the constants in the functions ~1 and ~2, 
but the original set of constants are retained in the present 
study. 

3•2. A new mode/ fo r  the near-wal l  damping funct ion 

The wall-correction model ~b~ z + q~ 2 was originally designed 
• . . ) ,  1 ,  

for the logarithmic regmn of a turbulent boundary layer 
and as such was intended to vanish further away from the wall. 
In a fully developed channel flow, on the other hand, the role of 
the wall corrections may prevail into the core of the flow (see, 
e.g., Abid and Speziale 1993). To prevent an exaggerated wall 
modification, an alternative to the conventional wall-proximity 
function in Equation 10 is now considered. 

A first approach would be to replace the damping function 
f with f(1 - A), where the anisotropy parameter A takes the 
value 1 in isotropic turbulence and becomes zero in the 
two-component limit. Now, by means of the weighting function 
g = ( 1 -  A/Am=O 2, which ranges from zero to unity in the 
two-component limit, a blending of the two functions f and 
f(1 - A) yields 

f,ew = f . g  + f(1 - AX1 - g) 

= f[(1 -- A) + A(I -- A/Am,,) z] (21) 

where the multiplicative factor within the square brackets is 
intended to weaken the wall influence in the central region of 
turbulent channel flows. Here, Am, x denotes the highest value 
of the anisotropy parameter A attained in the actual flow, 
Am=~ = 1 being its upper bound reached only in fully isotropic 
turbulence. 

3.3• Algebraic Reynolds stress mode/ 

Let us now assume that the nonzero components of the 
Reynolds stress tensor are practically constant in the central 
core region of the plane Couette flow. The viscous and 
turbulent stress diffusion can thus be neglected, and Equation 
2 for the second-moments reduces to 

0 = P u -  eu + q~u (22) 

which automatically implies local equilibrium, i.e., P = e. 
Although the extent of the core region is marginal in the 
low-Reynolds-number direct simulation of Kristoffersen et al. 
(1993), these assumptions are supported by the DNS data 
(Andersson et al. 1992, 1993). The originally strongly coupled 
model equations for the individual stress components can now 
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be manipulated to give a set of explicit algebraic expressions 
for the Reynolds stresses: 

U 2 2 v 2 
k - 3 (1 + b(2 + aC2C~)) + abC"[ -~ (23) 

v 2 2 
~- = ~ (1 - b(1 + 2aC2C~))/(1 + 2abC~) (24) 

w 2 2 v 2 
--k = -3 (1 - b(1 - aC2C~) ) + abC"( -~ (25) 

k -  -+~abC~ (26) 

where the new parameters 

a = f/(1 - C2) (27) 

b = (1 - C2)/Cx (28) 

have been introduced to simplify the notation. In accordance 
with the philosophy of near-wall modeling, the functions in 
Equations 14 to 18 are supposed to take constant values in the 
core region of the Couette flow. 

3.4 .  N u m e r i c a l  a p p r o a c h  

In unidirectional flow problems, like fully developed Poiseuille 
and Couette flows, the governing set of model equations 
consists of a single equation for the mean flow, four equations 
for the nonzero Reynolds-stress components, and the 
dissipation-rate equation. This set of ordinary differential 
equations can be solved numerically to practically any degree of 
accuracy. However, in a preliminary computational study, 
Andersson et al. (1993) were unable to obtain fully converged 
solutions with the standard Launder and Shima closure for 
turbulent Couette flow. Irrespective of the initial field adopted, 
the turbulence eventually died away. 

In the course of the present study, a new numerical 
solver for unidirectional flow problems has been constructed, 
in which the numerical stability and computational efficiency 
have been significantly improved. Spatial derivatives are 
replaced by second-order accurate central-difference approx- 
imations, in which the locations of the shear stress ~ are 
staggered with respect to the nodes for the other dependent 
variables. The resulting difference equations are solved 
semi-implicitly by a pseudo-time-marching scheme until a 
converged steady-state solution is reached. A nonuniform 
distribution of grid points across the flow was used to meet the 
grid-density requirements suggested by So et al. (1991). 
Typically, 100 grid points were needed to assure grid 
independency, and some of the calculations were rerun with 100 
percent more points without any discernible effect. For  Re 
above 20,000, the computations were made with 200 points. 

4. A s y m p t o t i c  analysis  f o r  high Re 

The Reynolds-averaged streamwise momentum equation, 
Equation 1, can readily be integrated once to give a constant 
shear stress distribution 

dU 
z = It - 7  -- pu--~ = pu~ (29) 

ay 

across the flow. Here, the partition among the viscous and 
turbulent contributions varies substantially across the flow. In 

the core region, the contribution of the turbulent shear stress 
- p u ~  is substantially greater than that of the viscous shear 
stress #dU/dy, and, moreover, the viscous contribution tends 
to zero in the high-Reynolds-number limit. 

For  sufficiently high Reynolds numbers, it can therefore be 
anticipated that -pfi'~ ..~ pu 2 in the__central core region, and it 
is furthermore conjectured that v 2 and k remain constant 
throughout the core in which local equilibrium conditions 
P = e prevail. Based on these simplifying assumptions, the 
dissipation rate equation (Equation 12) can be written as 

0 = dy 

where 

B2 _ C.2 - C.1 1 
C~ k2v 2 (31) 

becomes a positive constant in the region where k2v 2 is uniform. 
Equation 30 can therefore be integrated analytically to give 

e = Co/COS (eoBy) (32) 

where e o denotes the dissipation rate at the centerline. Now, 
by equating e to P = - f i ' ~ d U / d y  ~ u 2, dU/dy, the explicit 
formula 

U = In tan e o By + ~ Bu, + } Uw (33) 

can readily be deduced for the variation of the mean velocity 
in the core region. Here, eo can be obtained from the slope of 

2.dU/dylr = By the mean velocity profile at y = 0, i.e., e 0 = u, 0. 
adopting the eddy-viscosity concept, Henry and Reynolds 
(1984) derived an analogous equation for U(y) in the core 
region. 

5. Resul ts  and discussion 

The Launder and Shima model with the new wall-proximity 
function defined in Equation 21 has been used to compute 
plane turbulent Couette flow at Re = 2,600, which matches the 
Reynolds number adopted in the recent direct numerical 
simulation of Kristoffersen et al. (1993). Comparisons of the 
model calculations with DNS data are given in Figure 2. The 
variation of the mean velocity U across the flow is well 
reproduced by the model, except in the near-wall region from 
0.1 h to 0.3 h away from the walls (see Figure 2a). The 
overprediction of the mean velocity gradient in this region is 
more clearly seen in the distribution of the viscous shear stress 
in Figure 2b, in which the turbulent shear s t r e s s -  p ~  is 
correspondingly underestimated. The partition among viscous 
and turbulent shear is otherwise in close agreement with the 
DNS data. The profiles of the normal stresses compare 
reasonably well with the numerical simulations (see Figure 2c). 
Unlike the plane Poiseuille flow, only the streamwise normal 
stress exhibits a maximum in the near-wall region. The actual 
peak level is somewhat underestimated by the model, but this 
appeared to be a common feature of the eight near-wall closures 
examined by So et al. (1991). The departure of ~ from 
isotropy in the channel center is faithfully reproduced by the 
present model, which is closer to the DNS data than the 
prediction by Sund (1993) (see Table 2). It is moreover 
noteworthy that computations with the new wall-proximity 
function and the modified set of model constants suggested by 
Shima (1993a, 1993b) further improved the results. 

It is interesting to recall that the only distinction between 
Sund's model and the present approach is that Sund (1993) 
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Figure 2 Comparison of model computation (lines) and direct 
numerical simulation (Kristoffersen et al. 1993) (symbols) at 
Re = 2,600. (a) Distribution of mean velocity; (b) total ( - - ) ,  
turbulent ( - - - ) ,  and viscous ( - - - - )  shear stress; and (c) normal 
stress components 

Table 2 Centerline characteristics for Re = 2,600 

UjUw ~/k ~lk -~ lk  kl~ 

Sund 0.030 1.13 0.30 - -  3.46 
Present 0.030 1.09 0.34 0.29 3.33 
Present" 0.032 1.07 0.36 0.29 3.31 
DNS 0.032 1.06 0.38 0.30 3.22 

aWith a modified set of model constants due to Shima (1993a, 
1993b) 
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Figure 3 Variation of the wall-proximity function across the 
Couette channel for Re = 2,600. - - ,  Present approach; . . . .  , Sund 
(1993); . . . .  , conventional function defined in Equations 10 and 
11, deduced from the computed results in Figure 2 

used the conventional wall-proximity function f in Equation 
10, but with the effective wall-distance d accounting for only 
one wall at a time. This physically unappealing function 
exhibits a kink at the midplane, as shown in Figure 3, while 
the present proposal assures a smooth variation across the flow. 
In both cases, however, f attains an appreciable level even in 
the center. Contrary to the arguments of Schneider (1989), this 
observation demonstrates that inclusion of a wall-correction 
model is essential to assure a reasonable partition of energy 
among the normal stresses. This is also in keeping with the 
conclusion reached by Obi et al. (1989), namely, that model 
predictions are strongly influenced by the adopted wall- 
reflection model. 

In a preceding study of the same flow by Andersson et al. 
(1993), the standard Launder and Shima closure, as described 
in section 3.1, failed to converge. It was believed that the more 
robust numerical approach described in section 3.4 could 
remedy this unforeseen failure. However, even if the solution 
presented in Figure 2 was adopted as the initial field, the 
turbulence died slowly away as the solution was advanced 
forward in pseudo-time. The same behavior occurred at 
Re = 26,000, and we are therefore inclined to conclude that the 
Launder and Shima model, in its original version (Launder and 
Shima 1989), is unsuitable for turbulent Couette flow at low 
and moderate Reynolds numbers. 

With the converged solution in Figure 2 available, the 
original wall-proximity function defined in Equations 10 and 
11 can be deduced. The resulting variation of f across the flow 
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in Figure 3 exhibits a plateau over the region -0 .85  h < y < 
+ 0.85 h, with a maximum value above 1.2 in the center. This 
unreasonable high level of f exaggerates the effect of the 
wall-reflection model q~'~. 1 +_~i~,2, which__ redistributes energy 
from the normal direction to u 2 and w 2. The excess drainage of 
energy out of v 2 reduces_the magnitude of the shear 
stress production P12 = - v 2  dU/dy, thereby damping -~'~ 
and, ultimately, the overall turbulence level. 

The replacement of the original wall-proximity function with 
the new proposal in Equation 21 was sufficient to make the 
computations converge to the solution in Figure 2, which 
compares favorably with the DNS data. To examine whether 
the introduction of f ,e, ,  deteriorates the model performance in 
other flow situations, the benchmark problem adopted by So 
et al. (1991) was considered. The plane Poiseuille flow at 
Re~ = u~h/v = 180 was computed and compared with the direct 
numerical simulation of Kim et al. (1987) in Figure 4. The 
deviation between the computations with the original and the 
new f-function is negligible in the near-wall region as expected, 
whereas the new wall-proximity function has a favorable effect 
throughout the region - 0 . 9  h < y < +0.9 h. 

Due to computer limitations, DNS is feasible only at low 
Reynolds number, while the turbulence model should be 
applicable at any Re. Couette flow computations have therefore 
been carried out also at Re =4,762 and R e =  35,000. 
Comparisons with recent laboratory measurements by Aydin 
and Leutheusser (1987, 1991) and Tillmark and Alfredsson 
(1993) in Figure 5 show the same tendencies as in Figure 2, 
namely, that the peak level of the streamwise turbulence 
intensity is somewhat underestimated (Figure 5b) as is the mean 
velocity gradient dU/dy around the peak (Figure 5a). However, 
the streamwise intensity is slightly underpredicted in the core 
region in comparison with the experimental results in 
Figure 5b, while the predicted level of u: exceeded the DNS 
data in Figure 2c. 

At the significantly higher Reynolds number Re = 35,000, 
shown in Figure 6, the predicted mean velocity profile (Figure 
6a) is consistent with the experimental data (Robertson and 
Johnson 1970; El Telbany and Reynolds 1980; Reichardt 1959), 
while the scatter in the experimentally obtained intensities in 
Figure 6b does not allow any firm conclusions to be drawn. 8.j,.. 
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4 ~\ //c 

\ / \, ,Y 

~ v . , -  

-1.0 0.0 
y/h 

Figure 4 Comparison of model computations and direct numerical 
simulation of plane Poiseuille flow at Re~ = 180. - - ,  Present 
computation; - - - ,  original Launder and Shima closure; O, DNS 
(Kim et al. 1987) 
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Figure 5 Comparison of model computation and experimental 
d a t a . - - ,  Present computation, Re--4,762; I-I, Aydin and 
Leutheusser (1991), Re=4,762;  ©, Tillmark and Alfredsson 
(1993), Re=4,600.  (a) Distribution of mean velocity; (b) 
streamwise turbulence intensity 

A notable distinction between the computations presented 
in Figures 2 and 6 is that the characteristic wall layers occupied 
nearly 50 percent of the channel at Re = 2,600, while the core 
extends over more than 90 percent of the cross section at 
Re = 35,000. The outstanding features of the core region are 
therefore more easily revealed at higher Re. The profiles of the 
predicted turbulence intensities in Figure 6b show that the 
turbulent kinetic energy is uniform throughout the core. At this 
Re, it can also be observed that the diffusion terms vanish and 
leave a balance between stress production, pressure-strain 
redistribution, and dissipation, as hypothesized in Equation 22. 
The production rate P of the kinetic energy k is thus balanced 
by its dissipation rate e, both varying across the channel. It is 
also interesting to observe that the low-Re expressions in 
Equations 14 to 18 attain constant values in the core region, 
and these values moreover appear to be practically independent 
of the Reynolds number for Re > 20,000. These high-Re 
asymptotes have been used to compute the Reynolds stress 
components from the algebraic model equations (Equations 23 
to 26) for f-values ranging from 0 to 1 (see Figure 7). In 
accordance with the intention of the wall-reflection model, the 
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Figure 6 Comparison of model computation and experimental 
data. -, Present computation, Re = 35,000; l , Reichardt (1959), 
Re = 34,000; A. Robertson and Johnson (1970). Re = 28,200; A, 
Robertson and Johnson (1970), Re = 33,000; 0. El Telbany and 
Reynolds (1980). Re = 28,500; 0, El Telbany and Reynolds 
(1981). Re = 28,500; 0, El Telbany and Reynolds (1982), 
Re = 37,920. (a) Distribution of mean velocity; (b) turbulence 
intensities 

anisotropy increases with J i.e., as the wall-reflections become 
more infiuential. Midplane values arising from the full 
second-moment closure predictions have also been included in 
the figure. The substantial difference between the circles and 
the lines indicates that at least some of the assumptions 
underlying the ASM model are not fulfilled at Re = 2,600. On 
the other hand, the excellent agreement at Re = 35,000 
demonstrates that all the simplifications are justified at higher 
Re. The explicit algebraic model equations (Equations 23 to 
26) can therefore be used as a diagnostic tool to elucidate the 
influence of the wall-proximity function on the stress 
anisotropy. 

The numerical solutions for high-Re Couette flow confirmed 
the validity of the assumptions used in section 4. It is therefore 
interesting to observe from the close-up in Figure 8a that the 
analytical solution (Equation 33) closely approximates the 
model predictions for -0.25 h < y < +0.25 h even for the 
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Cy 7 0.40. The symbols denote full second-moment closure 
predrctions. 0, Re = 2,600; 0, Re = 35,000 
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lowest Re = 2,600, whereas Figure 8b shows that Equation 33 
accurately approximates the full transport model over at least 
60 percent of the channel at Re---35,000. However, the 
variation of dU/dy in the central portion of the Couette flow, 
as suggested by Equation 33 and reproduced by the model, is 
intuitively in conflict with the assumption of quasi- 
homogeneous shear flow. This observation signals a deficiency 
of the modeled z-equation (Equation 12), which can only be 
remedied if the otherwise unacceptable relationship C~1 = C~2 
is adopted. Contrary to the model predictions, however, the 
DNS data for Re = 2,600 exhibit a strictly linear variation of 
U in the center region (see also the variation ofdU/dy in Figure 
8b), thereby supporting the existence of von Kfirm~in's 
hypothesized homologous or quasi-homogeneous core in 
plane Couette flow. 

Finally, the predicted variation of the skin-friction coefficient 
Cf--2(~./p)/(U./2) 2= 8(uJUw) 2 with Re is compared with 
measured values and DNS data in Figure 9, whereas 
corresponding center-line characteristics are listed in Table 3. 
The solid lines in Figure 9 represent the semiempirical 
correlation formula 

Cf : =[log (Re/2)]- 2 (34) 

derived by Robertson and Johnson (1970). The two lines 
correspond to values of the dimensionless constant ~ equal to 
0.072 and 0.066, as suggested by Robertson and Johnson (1970) 
and El Telbany and Reynolds (1982), respectively. It is 
encouraging to observe that the model predictions broadly 
follow the trend of the data. It is particularly noteworthy that 
the turbulence vanishes at Re = 1,000 and that the solution 
conforms with the exact correlation 

Cy = 4. Re-  1 (35) 

for laminar flow. In spite of the great scatter in the reported 
values of the transitional Reynolds number, above which fully 
developed turbulence can be sustained, the most recent 
investigations by Tillmark and Alfredsson (1992) suggest Retr 
to be 720-t-20, whereas earlier studies reported Retr in the 
range of 560 to 1,500. 
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Figure 9 Skin-friction coefficient versus Reynolds number.--, 
Correlation formula in Equation 34, with ~( equal to 0.072 and 
0.066; - - -, correlation in Equation 35 for laminar flow; (3, present 
computations; ~ ,  DNS (Kristoffersen et al. 1993); ~ ,  DNS (Lee 
and Kim 1991);~i ' ,  Reichardt (1959) (taken from Chue and 
McDonald 1970); 5~i', Chue and McDonald (1970); I I ,  Leutheusser 
and Chu (1971 ) ; rl, Aydin and Leutheusser (1991 ) ; <~, El Telbany 
and Reynolds (1982) 

Table 3 Centerline characteristics for different Re 

Re u+/ Uw ~ / k  -~/k -'5~/k kl ~ 

1,500 0.032 1.40 0.13 0.18 4.83 
2,000 0.031 1.22 0.24 0.25 3.78 
2,600 0.030 1.09 0.34 0.29 3.33 
4,762 0.029 0.94 0.47 0.31 3.11 

10,000 0.027 0.91 0.50 0.32 3.10 
20,000 0.025 0.91 0.50 0.32 3.11 
35,000 0.023 0.91 0.50 0.32 3.15 

6.  C o n c l u d i n g  r e m a r k s  

The paper has focused on second-moment modeling of the 
conceptually simple Couette flow between two parallel planes 
in relative motion. The wall-proximity function f in the 
wall-reflection term, which is added to the model for the 
pressure-strain process, has been identified as the source of our 
inability to make the well-established Launder and Shima 
model conver_g_e. M._ore specifically, an exaggerated energy 
transfer from v 2 to u 2 resulted from an overestimated f in the 
core region. Since the introduction of a wall correction term is 
a common feature of many second-moment closures, the same 
tendency is likely to be found also with other turbulence 
closures for this particular flow. With the inclusion of a new 
wall-proximity function, however, a more realistic partition of 
turbulence energy among the normal stresses is assured, and 
the computations are in better accordance with DNS data and 
the most reliable experimental results than any of the previous 
attempts to calculate this flow. 

Closer examination of the computed results reveals that the 
modeled Couette flow exhibits a local-equilibrium core region 
the relative extension of which increases with Re. The 
substantial anisotropy of the Reynolds stress tensor observed 
in the direct simulation at Re = 2,600 is satisfactorily 
reproduced by the model. At higher Re, the explicit algebraic 
expressions for the individual Reynolds stresses accurately 
reproduced the stress anisotropy obtained from the full 
Reynolds stress transport model, thereby forming a practical 
diagnostic tool freed from numerical inaccuracies and the 
actual choice of model equation for the energy dissipation rate. 
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